Wavelet Estimators : Adapting to Unknown Smoothness

نویسنده

  • Anatoli Juditsky
چکیده

A wavelet thresholding algorithm is used to recover a function of unknown smoothness from noisy data. It is known that it can be tuned to be minimax in order over a wide range of Besov-type smoothness constraints and L p-losses. We provide a method to estimate an adaptive threshold parameter for each resolution level. It is shown that the proposed algorithm is adaptive in order, i.e. it attains the rate of convergence which is minimax up to a constant over Besov regularity classes and L p-error measures, 1 p 1. The algorithm is computationally straightforward: the whole eeort to compute the threshold is order N log N for the sample size N. Estimateurs par Ondelettes: Adaptation a la R egularit e Inconnue R esum e : On utilise un estimateur par ondelettes dans le cas o u la r egularit e de la fonction a estimer est inconnue. On propose un algorithme de seuillage adaptatif, dans lequel le para-m etre de seuillage est estim e a chaque niveau de r esolution. On d emontre que cet algorithme atteind une vitesse de convergence minimax a une constante pr es pour les risques L p sur les classes de Besov.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adapting to Unknown Smoothness by Aggregation of Thresholded Wavelet Estimators

We study the performances of an adaptive procedure based on a convex combination, with data-driven weights, of term-by-term thresholded wavelet estimators. For the bounded regression model, with random uniform design, and the nonparametric density model, we show that the resulting estimator is optimal in the minimax sense over all Besov balls under the L2 risk, without any logarithm factor.

متن کامل

Adapting to Unknown Smoothness by Aggregation of Thresholded Wavelet Estimators . Christophe Chesneau and Guillaume Lecué

We study the performances of an adaptive procedure based on a convex combination, with data-driven weights, of term-by-term thresholded wavelet estimators. For the bounded regression model, with random uniform design, and the nonparametric density model, we show that the resulting estimator is optimal in the minimax sense over all Besov balls under the L2 risk, without any logarithm factor.

متن کامل

Poisson Inverse Problems

In this paper, we fo us on nonparametri estimators in inverse problems for Poisson pro esses involving the use of wavelet de ompositions. Adopting an adaptive wavelet Galerkin dis retization we nd that our method ombines the well know theoreti al advantages of wavelet-vaguelette de ompositions for inverse problems in terms of optimally adapting to the unknown smoothness of the solution, togethe...

متن کامل

Adapting to Unknown Smoothness via Wavelet Shrinkage

We attempt to recover a function of unknown smoothness from noisy, sampled data. We introduce a procedure, SureShrink, which suppresses noise by thresholding the empirical wavelet coe cients. The thresholding is adaptive: a threshold level is assigned to each dyadic resolution level by the principle of minimizing the Stein Unbiased Estimate of Risk (Sure) for threshold estimates. The computatio...

متن کامل

On Adaptivity Of BlockShrink Wavelet Estimator Over Besov Spaces

Cai(1996b) proposed a wavelet method, BlockShrink, for estimating regression functions of unknown smoothness from noisy data by thresholding empirical wavelet co-eecients in groups rather than individually. The BlockShrink utilizes the information about neighboring wavelet coeecients and thus increases the estimation accuracy of the wavelet coeecients. In the present paper, we ooer insights int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994